Acids and Bases

Section 1: Acids

- What are acids?

The term 'acid' comes from a Latin word meaning 'sour', and we encounter many acids in everyday life. Vinegar (literally 'sour wine') is a dilute solution of ethanoic (acetic) acid. Limes, lemons and oranges contain citric acid, tea contains tannic acid, vitamin C is ascorbic acid, and rainwater and fizzy drinks contain carbonic acid. Proteins are built out of long chains of amino acids, and even the DNA molecule itself is an acid (deoxyribonucleic acid).

- What makes an acid acidic?

Acid molecules all contain hydrogen atoms, and when they dissolve in water the acid molecules split up, or dissociate, making hydrogen ions $\mathrm{H}+(\mathrm{aq})$ and a negative ion. A good example is hydrochloric acid, which dissociates completely into hydrogen ions and chloride ions:

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

It is these hydrogen ions that give acids their characteristic properties, including:

- their sour taste
- turning blue litmus paper red
- turning Universal Indicator red, orange or yellow
- a pH less than 7.00
- reacting with magnesium metal, making hydrogen gas:

$$
\begin{gathered}
\text { sodium carbonate + hydrochloric acid } \\
\rightarrow \text { carbon dioxide }+ \text { water }+ \text { sodium chloride } \\
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NaCl}(\mathrm{aq})
\end{gathered}
$$

- reacting with sodium carbonate, making carbon dioxide gas:

$$
\begin{gathered}
\text { magnesium + hudrochloric acid } \\
\rightarrow \text { hudrogen }+ \text { magnesium chloride } \\
\mathrm{Mg}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})
\end{gathered}
$$

- Suggested Films

- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2
- Crystals in Caves

DIAGRAM 01:

Name	Formula	Tupical pH of the acid solution	Strong acid or weak?	Comments	
Hudrochloric	HCl	1.0	Strong	Found in the stomach	
Sulphuric	$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.0	Strong	Use in car batteries and to make fertilisers	
Nitric	HNO_{3}	1.0	Strong	Used to make fertilisers	0.0
Methanoic (formic)	HCOOH	2.1	Weak	Found in ant and nettle stings	
Ethanoic (acetic)	$\mathrm{CH}_{3} \mathrm{COOH}$	2.4	Weak	Used in vinegar	
Carbonic	$\mathrm{H}_{2} \mathrm{CO}_{3}$	3.8	Weak	In rainwater and fizzy drinks	

Worksheet Question

- Question 1

- What are indicators and what is the pH scale?

Indicators are substances that change colour in acids and alkalis. In the early days of chemistry, plant dyes such as litmus (made from a type of lichen) were used as indicators. Litmus is red in acids and blue in alkalis. Red cabbage can also be used to make a very good indicator, but the problem with plant dyes is that they tend to degrade in contact with air and sunlight. Later, more stable synthetic indicators such as phenolphthalein and methyl orange were discovered. Universal Indicator is a mixture of dyes, giving a range of different colours which allow us to distinguish strongly acidic solutions from those that are weakly acidic, and strongly alkaline solutions from those that are weakly alkaline.

Indicator	Colour in acidic solutions	Colour in neutral solutions	Colour in alkaline solutions
Litmus	Red	Purple	Blue
Methyl orange	Pink	Orange	Yellow
Phenolphthalein	Colourless	Colourless	Pink
Universal Indicator	Red/orangelyellow	Green	Blue/purple

The pH scale usually runs from 1 to 14 , although it is possible to have pH values outside these limits. pH is a measure of the hydrogen ion concentration: low pH means a high concentration of hydrogen ions; high pH means a low concentration of hydrogen ions. Any solution with a pH below 7.00 will be acidic, a solution with a pH above 7.00 will be alkaline, and a solution with a pH exactly 7.00 (such as pure water) will be neutral.

We call an acid whose solutions have a low pH a strong acid. Strong acids are 100% dissociated in dilute solution: all the acid molecules are broken up to make hydrogen ions. A good example of a strong acid is nitric acid, which dissociates completely into hydrogen ions and nitrate ions:

$$
\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Weak acids will have a much higher pH , usually somewhere between 3 and 6 . This is because although a few acid molecules dissociate into ions, most of the acid molecules do not dissociate, so the concentration of hydrogen ions is quite low. Weak acids are only slightly dissociated in dilute solution. For example, ethanoic acid dissociates into hydrogen ions and ethanoate ions, making the equilibrium:

Solutions of nitric acid and other strong acids typically have low pH values, below 3.0 and approaching 0 .

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})
$$

Highly concentrated, strong acids such as concentrated sulphuric acid are very dangerous. Concentrated sulphuric acid is a viscous, dense liquid which is highly corrosive if spilt on the skin. It should always be handled with great care, wearing appropriate safety clothing and eye protection.

However, not all acids are as dangerous as concentrated sulphuric acid. The nature of the hazard depends on three main factors:

- how the acid interacts with human tissue
- whether the acid is strong or weak - this depends on the chemical nature of the acid: we cannot change the nature of the acid
- how concentrated or dilute the acid is - we can decide how much acid to dissolve in a given volume of water.

DIAGRAM 02:

The pH Scale
CHEMISTRY • REACTIONS • ACIDS AND BASES
Weak acids are therefore not necessarily safer to use than strong acids, as their chemical nature and their concentration can also affect how corrosive they are. Hydrofluoric acid HF is a weak acid but is highly corrosive, because it attacks human flesh and can cause serious injuries despite being technically 'weak'.

Our own bodies contain hydrochloric acid in the stomach, which has a pH between 1 and 2 . We also add lemon juice and vinegar to our food, and drink fruit juices, all of which are acidic. The difference lies in their pH : the pH of the foods and drinks we consume are relatively high, so we are able to put them in our bodies safely. If we eat too much acidic food, however, we may suffer from painful acid indigestion, as the stomach is irritated by contents that have too low a pH.

Worksheet Question

- Question 2
- Suggested Films
- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2
- FactPack: pH Scale

Extension Questions

Q1. What is the difference between a 'strong' acid and a 'concentrated' acid?
Strong acids are 100% dissociated into hydrogen ions, for example, hydrochloric acid. Concentrated acids have a large mass of the acid dissolved in a small volume of water, for example, concentrated hydrochloric acid, concentrated sulphuric acid.

Q2. Are weak acids safe to handle without gloves?
Not necessarily. It will depend on the nature of the acid and how concentrated the acid is. Hydrofluoric acid HF is highly corrosive despite being a weak acid. Concentrated methanoic (formic) acid is a weak acid but is highly corrosive, and when it is used to remove limescale in showers, gloves and eye protection must be used

Section 2: Bases

- What is a base?

A base is a substance that neutralises an acid. There are three main types of base: metal oxides, metal hydroxides and metal carbonates. When they react with an acid, they all make a metal salt:

```
        metal oxide + acid }->\mathrm{ metal salt + water
    metal hudroxide + acid }->\mathrm{ metal salt + water
metal carbonate + acid }->\mathrm{ metal salt + water + carbon dioxide
```

See Section 3 for examples of these reactions.

- Suggested Films
- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2
- Worksheet Question
- Question 3

- What is an alkali?

There are no simple chemical tests which can be used for all bases, as some bases are insoluble in water (iron(III) oxide, copper(II) oxide) and other bases are soluble in water. Soluble bases are called alkalis. The hydroxides of the Group 1 elements (the alkali metals) are all strong alkalis; the hydroxides of Group 2 (alkaline-earth metals) are also alkalis, but are somewhat weaker. Alkalis have the following properties:

- turn red litmus blue
- turn Universal Indicator blue or purple
- have a pH greater than 7
- taste bitter
- feel 'soapy' when on the skin

Strong alkalis are 100\% dissociated in dilute solution, making positive ions and hydroxide ions, for example:

$$
\begin{aligned}
& \text { sodium hydroxide sodium ions } \\
& \quad+\text { hudroxide ions } \\
& \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

Strong alkalis have very high pH values, approaching pH 14 . Strong, concentrated alkalis are highly corrosive when in contact with the skin, and must be handled at least as carefully as strong, concentrated acids, hence the terms 'caustic soda' and 'caustic potash' - 'caustic' means 'burning'.

DIAGRAM 03:

[^0]
-Whù are alkalis used for cleaning?

Alkalis are used for cleaning because they can break down the molecules in fats and oils. This creates an emulsion, which allows the oil to be washed away. Fats and oils are triesters of glycerol, known as triglycerides. Alkalis react with triglycerides to make a sodium or potassium salt and glycerol:

```
sodium hudroxide + (vegetable oil) trigluceride }->\mathrm{ sodium salt + glucerol
```


Alkalis are used in cleaning products

- Suggested Films

- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2
- Why Do Leaves Change Colour?

The sodium salt is soluble in water and also acts as an emulsifier, thus cleaning the fat or oil. Soaps are salts of sodium or potassium made by this reaction with vegetable oils.

Section 3: Neutralisation and Salts

- What is a salt?

A salt is a compound made when a base neutralises an acid. The type of salt made will depend on the acid:

Acid	Type of salt it makes
hydrochloric	chloride
sulphuric	sulphate
nitric	nitrate
methanoic	methanoate
ethanoic	ethanoate
carbonic	carbonate

metal oxide + acid \rightarrow metal salt + water copper oxide + sulphuric acid \rightarrow copper sulphate + water

$$
\mathrm{CuO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The first part of the name of the salt comes from the base; the second part from the acid.

$$
\begin{aligned}
& \text { metal hudroxide }+ \text { acid } \rightarrow \text { metal salt }+ \text { water } \\
& \text { sodium hudroxide }+ \text { hudrochloric acid } \rightarrow \text { sodium chloride }+ \text { water } \\
& \mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& \text { metal carbonate }+ \text { acid } \rightarrow \text { metal salt }+ \text { water }+ \text { carbon dioxide } \\
& \text { copper carbonate }+ \text { sulphuric acid } \rightarrow \text { copper sulphate }+ \text { water }+ \text { carbon dioxide } \\
& \mathrm{CuCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Salts are always 100% dissociated into ions in dilute solution, for example sodium chloride solution consists entirely of sodium ions and chloride ions. There are no 'sodium chloride molecules':

$$
\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-(\mathrm{qq})}
$$

[^1]
- What is neutralisation?

Neutralisation is a chemical reaction in which a base reacts with an acid. For example, when sodium hydroxide neutralises hydrochloric acid:

> (I) sodium hudroxide + hydrochloric acid \rightarrow sodium chloride + water $$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Since sodium hydroxide is a strong alkali it is 100% dissociated:

$$
\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

Hydrochloric acid is 100% dissociated:

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Sodium chloride is also 100% dissociated:

$$
\mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

If we substitute all these ions into equation (I) we get

$$
\text { (II) } \begin{gathered}
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
\end{gathered}
$$

The sodium ions and chloride ions 'cancel out' on both sides of the equation, because they are not actually involved in the reaction: we say they are 'spectator ions'. This gives the overall equation for neutralisation:

$$
\text { (III) } \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Equation (III) shows that the neutralisation reaction involves a hydrogen ion reacting with a hydroxide ion to make a water molecule. Neutralisation reactions are always exothermic, because a new $\mathrm{O}-\mathrm{H}$ covalent bond is being made when the water molecule is formed from the hydroxide ion and the hydrogen ion. Pure water can also break up into hydrogen ions and hydroxide ions to a very small extent:

- Suggested Films
- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2

This is called the self-ionisation of water. Equation (IV) tells us that in water the number of hydrogen ions and hydroxide ions must be equal, which is why pure water is neutral with pH 7.00 .

- When is neutralisation a useful reaction?

Neutralisation has many practical applications. If we have acid indigestion because the concentration of the acid in our stomach is too high, we can take an antacid, which is a base, to neutralise the acid. Commonly used antacids are: calcium carbonate, sodium hydrogencarbonate (bicarbonate of soda), magnesium hydroxide, aluminium hydroxide and magnesium carbonate.

The pH of soil is of crucial importance in order for crops to grow well. If land is farmed intensively, the soil tends to become more acidic (its pH drops) and crop yields tend to fall. As plants can't take in nutrients, such as nitrogen and phosphorus compounds, if the pH is too low, farmers add alkaline calcium hydroxide (slaked lime) to the soil to neutralise the soil acidity. This makes the soil pH rise to a level at which the crops can absorb these vital nutrients.

Acids are also made by the action of bacteria in the mouth, breaking down sugary foods into acids which dissolve tooth enamel and cause tooth decay. Toothpaste is alkaline and so neutralises the acid and slows down the attack on the enamel.

- Suggested Activity

Ask students to research 4 or 5 commercial antacids and find out what chemicals they contain. Identify the bases in each antacid

- Suggested Films
- Acids and Alkalis: Part 1
- Acids and Alkalis: Part 2

Antacids can be used to neutralise stomach acid

Extension Question

Q3. What problem mau be caused bu the use of calcium carbonate as an antacid?
The carbon dioxide gas generated during the reaction may cause discomfort in the stomach.

- Worksheet

Q1. Sort the following substances into acids and alkalis:
toothpaste, baking powder, vinegar, milk, human blood, saliva, tomato juice, lemonade, soap, detergent, pure water, bleach

Acids:
Alkalis: \qquad

Q2. Put the following substances in order of decreasing acidity, starting with the MOST acidic:
human blood 7.4, vinegar 3.0 , milk 6.6, tomato juice 4.5, pure water 7.0 , bleach 12.0 , wine 4.0 , toothpaste 9.0, oven cleaner 13.0, lemon juice 2.0, window cleaner 10.0

Q3. Which of these substances are NOT bases? Whu?
$\mathrm{NaCl}, \mathrm{KOH}, \mathrm{CCl}_{4}, \mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{BaO}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CuO}, \mathrm{HCl}, \mathrm{CuCO}_{3}$
\qquad
\qquad
\qquad
\qquad

Q4. Complete and (if necessary) balance these word and sumbol equations to show the neutralisation reactions:
(a) magnesium oxide + sulphuric acid \rightarrow

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow
$$

(b) calcium hydroxide + hydrochloric acid \rightarrow

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow
$$

(c) sodium carbonate + nitric acid

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow
$$

- Worksheet Answers

Q1. Sort the following substances into acids and alkalis:
toothpaste, baking powder, vinegar, milk, human blood, saliva, tomato juice, lemonade, soap, detergent, pure water, bleach

Acids: vinegar, milk, tomato juice, lemonade
Alkalis: toothpaste, baking powder, human blood, bleach, soap, detergent

Q2. Put the following substances in order of decreasing acidity, starting with the MOST acidic: human blood 7.4, vinegar 3.0, milk 6.6, tomato juice 4.5, pure water 7.0, bleach 12.0, wine 4.0 , toothpaste 9.0, oven cleaner 13.0, lemon juice 2.0, window cleaner 10.0

Most Acidic	Lemon juice 2.0	Vinegar 3.0	Wine 4.0	Tomato juice 4.5	$\begin{gathered} \text { Milk } \\ 6.6 \end{gathered}$	Pure water 7.0	Human blood 7.4	Tooth- paste 9.0	Window cleaner 10.0	Bleach 12.0	Oven cleaner 13.0	Most Alkaline

Q3. Which of these substances are NOT bases? Whu?
$\mathrm{NaCl}, \mathrm{KOH}, \mathrm{CCl} 4, \mathrm{Mg}(\mathrm{OH}) 2, \mathrm{BaO}, \mathrm{Na} 2 \mathrm{CO} 3, \mathrm{CuO}, \mathrm{HCl}, \mathrm{CuCO} 3$
$\mathrm{NaCl}, \mathrm{CCl}_{4}$ - are NOT bases because they are not metal oxides, hydroxides or carbonates
$\mathrm{KOH}, \mathrm{Mg}(\mathrm{OH})_{2}$ - are metal hydroxides
BaO and CuO are metal oxides
$\mathrm{Na}_{2} \mathrm{CO}_{3}$, and CuCO_{3} are metal carbonates
HCl is an acid

Q4. Complete and (if necessary) balance these word and sumbol equations to show the neutralisation reactions:
(a) magnesium oxide + sulphuric acid \rightarrow magnesium sulphate + water

$$
\mathrm{MgO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{MgSO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(b) calcium hydroxide + hydrochloric acid \rightarrow calcium chloride + water

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{I})
$$

(c) sodium carbonate + nitric acid \rightarrow sodium nitrate + water + carbon dioxide

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

- Quizzes

Acids and Alkalis: Part 1

Basic

- Which of these substances is NOT acidic?

A - lemon juice
B - vinegar
C - distilled water
D - fizzy drinks

- Which of these pH values does NOT indicate an acid?

A-7.1
B-6.9
C-4.0
D-3.4

- Tea is acidic, but it is safe to consume because the acid is...

A - weak
B - soluble in water
C-corrosive
D - an irritant

- If you are handling a corrosive acid, you should wear all the following EXCEPT for...

A - gloves
B - lab coat
C - goggles
D - trainers

- Which of these pH values indicates a strong alkali?
- Hudrochloric acid can be neutralised bu all the following EXCEPT for...

A - sodium oxide
B - sodium carbonate
C - sodium chloride
D - sodium hydroxide

Basic

- The reaction between an acid and a base is called...

A-oxidation
B - reduction
C - combustion
D - neutralisation

- Indigestion tablets are made of...

A - an alkali
B - an acid
C - a salt
D - sugar

- When a base reacts with an acid it makes...

A - a salt
B - a salt and water
C - an alkali
D - an acid

- Carbon dioxide can be absorbed by soda lime in a 'rebreather' because carbon dioxide is...

A - a greenhouse gas
B - corrosive
C-acidic
D - alkaline

- Exhaled air contains a lot of...

$$
\begin{aligned}
& A \text { - argon } \\
& B \text { - carbon dioxide } \\
& C \text { - nitrogen } \\
& D \text { - oxygen }
\end{aligned}
$$

a solution has pH 7 it will turn Universal Indicator...

$$
\begin{aligned}
& A \text { - red } \\
& B \text { - purple } \\
& C \text { - blue } \\
& D \text { - green }
\end{aligned}
$$

Advanced

- A neutralisation reaction could be used to make all the following compounds EXCEPT...

A - sodium chloride
B - sodium sulphate
C - sodium nitrate
D - sodium oxide

- Sodium hudroxide is NOT suitable for use in treating stomach indigestion because sodium hudroxide is...

$$
\begin{aligned}
& \text { A - corrosive } \\
& \text { B - acidic } \\
& \text { C - toxic } \\
& \text { D - insoluble in water }
\end{aligned}
$$

- Answers

Acids and Alkalis: Part 1

Basic

- Which of these substances is NOT acidic?

A - lemon juice
B - vinegar
C-distilled water
D - fizzy drinks

- Which of these pH values does NOT indicate an acid?

A-7.1
B-6.9
C-4.0
D - 3.4

- Tea is acidic, but it is safe to consume because the acid is...

A - weak
B - soluble in water
C - corrosive
D - an irritant

- If a solution of sugar is tested with Universal Indicator, what colour will the indicator be?

A - green
B - red
C - yellow
D - blue

- If you are handling a corrosive acid, you should wear all the following EXCEPT for...

> A - gloves
> B - lab coat
> C - goggles

D - trainers

- Hudrochloric acid can be neutralised bu all the following EXCEPT for...

A - sodium oxide
B - sodium carbonate
C - sodium chloride
D - sodium hydroxide

Acids and Alkalis: Part 2

Basic

- The reaction between an acid and a base is called...

A-oxidation
B - reduction
C - combustion
D - neutralisation

- Indigestion tablets are made of...
- Exhaled air contains a lot of...

A - argon
B - carbon dioxide

$$
C \text { - nitrogen }
$$

D - oxygen

- If a solution has pH 7 it will turn Universal Indicator

$$
A-\text { red }
$$

B - purple

$$
\mathrm{C} \text { - blue }
$$

D-green

- A neutralisation reaction could be used to make all the following compounds EXCEPT...

A - sodium chloride
B - sodium sulphate
C-sodium nitrate
D - sodium oxide

- Sodium hudroxide is NOT suitable for use in treating stomach indigestion because sodium hudroxide is...

A - corrosive
B - acidic
C - toxic
$D-$ insoluble in water

[^0]: - Suggested Films
 - Acids and Alkalis: Part 1
 - Acids and Alkalis: Part 2

[^1]: - Suggested Films
 - Acids and Alkalis: Part 1
 - Acids and Alkalis: Part 2
 - First Synthetic Pigment
 - Worksheet Question
 - Question 4

