Fractals: The Menger Sponge

NAME:

CLASS:

DATE:

## Basic/Core

1) Give the name and properties of the following shapes:
a)


Name:
Number of faces:
Number of edges:
Number of vertices:

## Name:

Number of faces:
Number of edges:
Number of vertices:

## Name:

Number of faces:
Number of edges:
Number of vertices:

## Name: <br> Number of faces: <br> Number of edges: <br> Number of vertices:

 Fractals: The Menger Sponge
## Basic/Core

2) Give the number of faces, vertices, and edges for each of the following Platonic solids:

| Platonic Solid | Faces | Vertices | Edges |
| :--- | :--- | :--- | :--- |
| Tetrahedron |  |  |  |
| Cube |  |  |  |
| Octahedron |  |  |  |
| Dodecahedron |  |  |  |
| Icosahedron |  |  |  |

3) Describe the relationship that exists between the sum of the faces and vertices and the number of edges for each of the shapes above. Fractals: The Menger Sponge

NAME:

CLASS:

DATE:

## Advanced

1) The area of an equilateral triangle can be found using the formula Area $=\frac{s^{2} \times \sqrt{3}}{4}$

Fill in the table below, calculating the area of an equilateral triangle of the given size. In the last column divide the area of the triangle you are considering by the area of the previous triangle.

| Triangle | Length of side (s) | Area | Area $\div$ Previous Area |
| :---: | :---: | :---: | :---: |
| a | 1 |  | ------------------------- |
| b | 2 |  |  |
| c | 4 |  |  |
| d | 8 |  |  |
| e | 16 |  |  |

Note and discuss your findings.
2) Fill in the table below calculating the volume of a cube of the given size. In the last column divide the volume of the cube you are considering by the volume of the previous cube.

| Cube | Length of side | Volume | Volume - Previous Volume |
| :---: | :---: | :---: | :---: |
| a | 1 |  | -------------------- |
| $b$ | 2 |  |  |
| c | 4 |  |  |
| d | 8 |  |  |
| e | 16 |  |  |

Note and discuss your findings. Compare your results to the previous table.
3) Give the first five terms of the sequences generated by:
a) $U_{n}=n^{2}+3$
b) $U_{n}=n^{2}-4$
c) $U_{n}=n^{3}+5$
d) $U_{n}=n^{2}+n+2$

## Fractals: The Menger Sponge

## ANSWERS

## Basic/Core

1) a) Cube, 6, 12, 8;
b) Cuboid, 6, 12, 8;
c) Tetrahedron, 4, 6, 4;
d) Sphere, 1, 0, 0
2) 

| Platonic Solid | Faces | Vertices | Edges |
| :--- | :--- | :--- | :--- |
| Tetrahedron | 4 | 4 | 6 |
| Cube | 6 | 8 | 12 |
| Octahedron | 8 | 6 | 12 |
| Dodecahedron | 12 | 20 | 30 |
| Icosahedron | 20 | 12 | 30 |

3) Faces + Vertices - Edges $=2$

## Advanced

1) 

| Triangle | Length of side (s) | Area | Area $\div$ Previous Area |
| :---: | :---: | :---: | :---: |
| a | 1 | 0.433 | ----------------- |
| $b$ | 2 | 1.732 | 4 |
| c | 4 | 6.928 | 4 |
| d | 8 | 27.713 | 4 |
| e | 16 | 110.851 | 4 |

2) 

| Cube | Length of side | Volume | Volume $\div$ Previous Volume |
| :---: | :---: | :---: | :---: |
| a | 1 | 1 | -------- |
| $b$ | 2 | 8 | 8 |
| c | 4 | 64 | 8 |
| d | 8 | 512 | 8 |
| e | 16 | 4,096 | 8 |

3) a) $4,7,12,19,28$
b) $-3,0,5,12,21$
c) $6,13,32,69,130$
d) 4, 8, 14, 22, 32
