The History of the Golden Ratio

NAME:

CLASS:

DATE:

Basic

1) Express the following ratios in their simplest form:
a) $5: 20$
b) $14: 21$
c) $36: 18$
d) $105: 100$
2) Express the following ratios in their simplest form:
a) $36: 40$
b) $6 \mathrm{~mm}: 3 \mathrm{~cm}$
c) $2.5 \mathrm{~m}: 6 \mathrm{~m}$
3) The dimensions of a room are length 12 m and width 8 m . What is the ratio of:
a) its length to its width?
b) its width to its length?

The History of the Golden Ratio

Basic

4) The course of a yacht race from point A to point B to point C and back to point A is shown in the diagram below. Using the scale of 1 cm to 50 km , calculate the total distance of the completed course.

5) Draw the following triangles accurately:
a)

b)

c)

The History of the Golden Ratio

NAME:

CLASS:

DATE:

Core

1) Express the following ratios in their simplest form:
a) $5: 20$
b) $14: 21$
c) $36: 18$
d) $105: 100$
2) Express the following ratios in their simplest form:
a) $36: 40$
b) $6 \mathrm{~mm}: 3 \mathrm{~cm}$
c) $2.5 \mathrm{~m}: 6 \mathrm{~m}$
3) Express the following ratios in the form 1:n
а) $3: 18$
b) $4: 10$
c) $4: 31$
d) $4: 15$
4) The perimeter of a triangle is 75 cm . The sides have lengths a, b and c. The ratio of b to a is $3: 5$, and the ratio of c to a is $7: 5$. Find the length of each side.

The History of the Golden Ratio

Core

5) Draw the following triangles accurately.
a)

b)

c)

6) The formats for standard paper sizes are as follows:

- The area of $A 0$ is $1 \mathrm{~m}^{2}$; the area of $A 1$ is $0.5 \mathrm{~m}^{2}$; that of $A 2$ is $0.25 \mathrm{~m}^{2}$, and so on.
- All formats are similar.
- Format $A 1$ is $A 0$ cut into two equal pieces. Thus, the length of $A 1$ is the width of $A 0$ and the width of $A 1$ is half the length of $A 0$. In a similar way format $A 2$ is $A 1$ cut into equal pieces.

The History of the Golden Ratio

NAME:

CLASS:

DATE:

Advanced

1) Express the following ratios in the form $1: n$
a) $3: 18$
b) $4: 10$
c) $4: 31$
d) $4: 15$
2) The perimeter of a triangle is 75 cm . The sides have lengths a, b, and c. The ratio of b to a is $3: 5$, and the ratio of c to a is $7: 5$. Find the length of each side.
3) The formats for standard paper sizes are as follows:

- The area of $A 0$ is $1 \mathrm{~m}^{2}$; the area of $A 1$ is $0.5 \mathrm{~m}^{2}$; that of $A 2$ is $0.25 \mathrm{~m}^{2}$, and so on.
- All formats are similar.
- Format A1 is A0 cut into two equal pieces. Thus, the length of $A 1$ is the width of $A 0$ and the width of $A 1$ is half the length of $A 0$. In a similar way format $A 2$ is $A 1$ cut into equal pieces.
a) What is the proportion of width and length for each paper format?
b) What are the width and length of a piece of A4 paper?
c) If you want to change the size of an A3 picture to A4 format, what percentage reduction would you have to make?

The History of the Golden Ratio

Advanced

4) A dining room must meet the following design specification:

- It must be cuboid in shape.
- The floor area must be greater than $15 \mathrm{~m}^{2}$ and less than $30 \mathrm{~m}^{2}$.
- It must have a floor diagonal of at least 7 m .
- It must have a diagonal from the floor to the ceiling that makes an angle of between 15° and 25°.
- \quad The height of the room must be less than $3 m$ but greater than $2 m$.

Draw a scale model of the net of a possible room that meets the above design requirements.

The History of the Golden Ratio

ANSWERS

Basic

1) a) $1: 4$
b) $\mathbf{2 : 3}$
c) $\mathbf{2 : 1}$
d) $\mathbf{2 1 : 2 0}$
2) a) $9: 10$
b) $1: 5$
c) $5: 12$
3) a) $3: 2$
b) $\mathbf{2 : 3}$
4) 720 km
Core
5) a) $1: 4$
b) $2: 3$
c) $\mathbf{2 : 1}$
d) $\mathbf{2 1 : 2 0}$
6) a) $9: 10$
b) $1: 5$
c) $5: 12$
7) a) $1: 6$
b) $1: 2.5$
c) $1: 7.75$
d) 1:3.75
8) $\mathrm{a}=25 \mathrm{~cm} ; \mathrm{b}=15 \mathrm{~cm} ; \mathrm{c}=35 \mathrm{~cm}$
9) a) $1: 1.414$
b) $\mathbf{2 1 0} \mathbf{m m} \times 297 \mathrm{~mm}$

Advanced

1) a) $1: 6$
b) $1: 2.5$
c) $1: 7.75$
d) 1:3.75
2) $\mathrm{a}=25 \mathrm{~cm} ; \mathrm{b}=15 \mathrm{~cm} ; \mathrm{c}=35 \mathrm{~cm}$
3) a) $1: 1.414$
b) $\mathbf{2 1 0} \mathbf{m m} \times 297 \mathrm{~mm}$
c) 70.7%
