Twig	Proofs: Million-Dollar Maths
NAME:	
CLASS:	
DATE:	
	Basic
1) In maths, what do we call assertion	ons that are not known to be true or false?
2) What do we call the process of es	stablishing the truth of an assertion?
3) Write down the negation of the fo	llowing statements:
a) 23 ≥ 34	b) $3x + 5x = 6x$
4) Given that $6x - 8 = 2x$, prove that	<i>x</i> = 2.
5) Read the following proof. If there Given $x \in Z$ and $x^2 + 2x = 2x + 25$, $x^2 = 25$ x = 5	is a fault, state the line number and why the line is wrong. prove $x = 5$.
If the given statements are true, the	n <i>x</i> = 5.

Twig	Proofs: Million-Dollar Maths			
NAME:				
CLASS:				
DATE:				
	Core			
1) Prove by contradiction that $\sqrt{2}$ is not rational.				
2) Prove by induction that $n^3 + 2n$ is divisible by 3, $n \ge 1$, $n \in N$.				
3) Prove that $\sin 2x = 2$	sinx cosx.			

Twig	Proofs: Million-D	ollar Maths
NAME:		
CLASS:		
DATE:		
	Advanced	
1) A: n² is even. B: n is even (n € Z). Prove A ⇒ B by con	htradiction.	
2) Prove by contradicti	ion that √7 is irrational.	

= $2\sin x \cos x$

Proofs: Million-Dollar Maths

ANSWERS		
	Basic	
1) Conjectures or hypotheses		
2) A proof		
3) a) 2³ < 3⁴ T	b) $3x + 5x \neq 6x$ ($x \neq 0$) T	
4) $4x = 8$, therefore $x = 2$; thus proved.		
5) Wrong, because $x = +-5$.		
	Core	
1) Assume that $\sqrt{2} \in Q$.		
$\exists a, b \in \mathbb{Z}$		
$a = b \sqrt{2}$		
$a^2 = 2b^2$		
u^2 is even. u is even so a bas a factor of 2		
Let $a = 2k$ where $k \in \mathbb{Z}$.		
Then $4k^2 = 2b^2$ (since $a^2 = 2b^2$).		
$b^2 = 2k^2$		
<i>b</i> ² is even.		
<i>b</i> is even, so <i>b</i> has a factor of 2.		
Both <i>a</i> and <i>b</i> are even.		
\Rightarrow a and b have a common factor of 2.	e wel	
we have a contradiction; thus $\sqrt{2}$ is not ration	onal.	
2) a) The statement is true for the lowest re	quired value of <i>n</i> , namely <i>n</i> = 1: 1 ³ + 2 x 1 = 3, which is	
b) Assume that it is true for some value $n =$	k Therefore $k^3 + 2k = 3m$ for some $m \in N$	
Consider $n = k + 1$.	k . Therefore, $k \to 2k = 6m$ for some $m \in \mathbb{N}$.	
$(k + 1)^3 + 2(k + 1) = k^3 + 3k^2 + 3k + 1 + 2k + 2$		
$= k^3 + 2k + 3k^2 + 3k + 3$		
$= (k^3 + 2k) + 3(k^2 + k + 1)$		
$= 3m + 3(k^2 + k + 1)$		
$= 3(m + k^2 + k + 1)$		
$= 3m_1$ for some m1 $\in N$		
$\Rightarrow \text{ the statement is true for }$	k + 1.	
it is true \forall n \geq 1, <i>n</i> \in N.		
$3) \sin 2x = \sin(x + x)$		
= $sinx cosx + cosx sinx$		

Proofs: Million-Dollar Maths

ANSWERS

Advanced

1) Assume that A is true but B is false. Then *n* is odd and n = 2m + 1 where $m \in Z$. But $(2m + 1)^2 = 4m^2 + 4m + 1$ $= 2(2m^2 + 2m) + 1$ = 2r + 1where $r \in Z$

This shows that $(2m + 1)^2 = n^2$ is odd, which contradicts statement A. Thus *n* must be even.

2) Assume $\sqrt{7}$ is rational.

Then $\sqrt{7} = \frac{m}{n}$ for integers *m* and *n*, which have no common factors because we can cancel any common factors first, [greatest common factor (*m*, *n*) = 1].

$$\sqrt{7} = \frac{m}{n}$$
$$7 = \frac{m^2}{n^2}$$

7n² = m²

7|m by the fundamental theorem of arithmetic $7^2|m^2$ $7^2|7n^2$ 7| n^2 7|n by the fundamental theorem of arithmetic 7|m and 7|n i.e. m and n have a common factor.

This contradicts (m, n) = 1.

This in turn contradicts our original assumption that $\sqrt{7}$ is rational, and hence $\sqrt{7}$ must be irrational.